Silicon Valley (and Montana) radiation levels

Sensor: LND 7121 G-M tube, gamma sensitivity (60Co) 18 cps/mR/hr, time-to-first-count circuit, usable range 1 µR/h - 600 R/h.

Frequently asked questions (well, not really)

Q: What am I looking at?
A: The measurements of the dose rate in Sunnyvale, California, expressed in microröntgens per hour. The elevation is around 30 ft above sea level. The setup is predominantly sensitive to gamma radiation and X-rays and is mounted in a wooden-frame utility space close to an exterior air vent. The chart is updated every five minutes or so.
Q: What's the "Montana reference" thing on the plots?
A: I also have another sensor in Northwest Montana, at an elevation of about 3,300 feet above sea level. I figured it may be an interesting comparison.
Note (May 15, 2017): this is temporarily down, gotta fix something.
Q: But what does this mean?
A: Depends, but most likely nothing.
Q: Gee, thanks a bunch. What's normal?
A: The usual background levels at this Sunnyvale location appear to be around 8-9 µR/h. This is due to cosmic radiation, the decay of natural radioisotopes in the soil, and various man-made releases over the past several decades. Modest excursions above this baseline (10% or so) are sometimes correlated with solar activity or winds from more radioactive parts of the world.
Q: Okay, what wouldn't be considered normal?
A: Increases past 20-50 µR/h would be highly anomalous for this location, but not particularly bad for you. Ignoring some ongoing scientific controversy, the effects of ionizing radiation appear to be roughly cumulative. The first statistically observable effect is a 0.6% increase in cancer risk once you are exposed to an extra dose of 10 röntgens (or more correctly, 100 millisieverts) throughout your life. At 50 µR/h (~0.5 µSv/h), it would take about 25 years to reach that threshold.
Q: Isn't an extra 0.6% cancer risk a pretty big deal?
A: Your lifetime odds of developing cancer are already around 50%. Similarly to salt consumption risks, the extra 0.6% may be statistically significant across large populations, and thus be of interest to public health - but it represents a negligible hazard on an individual basis.
Q: What readings would be truly dangerous, then?
A: There is no simple answer; for example, radioisotopes that are absorbed by your body can be far more dangerous than ambient radiation levels, and the meter doesn't check your diet. But an acute dose of 100 R (1 Sv) can cause mild radiation sickness; and even when received more slowly, it can substantially increase your cancer risk (+6%). Acute exposure to 500 R (5 Sv) is often lethal.
Q: Wait a moment... why are Montana readings quite a bit higher than Sunnyvale?
A: Sunnyvale is a coastal city, while the other location is up in the mountains - which means that there is less atmosphere to stop cosmic rays. If that freaks you out, consider that a commercial flight easily exposes you to about 300 µR/h!
Q: If there's ever a nuclear emergency, wouldn't I just want to die quickly anyway?
A: Hey, it's your life, but probably not. Such events are a lot more survivable than portrayed in fiction - and more importantly, what awaits the survivors is not necessarily all that bleak. You may want to check out a free book titled "Nuclear War Survival Skills". It sounds goofy, but it is a surprisingly interesting read and it goes through some hard science to debunk folksy beliefs. And if you are interested in common-sense preparedness strategies for more plausible risks, check out this guide, too.
Q: If radiation can kill, why do they insist that microwaves and cell phones are safe?
A: Ionizing radiation involves particles so energetic that they routinely knock electrons out of the atoms they collide with. That's enough to destroy all kinds of fragile organic molecules essential to life. We detect ionizing radiation by measuring this very phenomenon in a sealed Geiger-Müller tube containing a noble gas. In contrast, RF signals involve particles that are orders of magnitude less energetic even than the photons in visible light. Neither visible light nor radio transmissions do anything interesting to a G-M tube. That's not to say that there aren't other ways for high-intensity RF or visible light to hurt you; for example, you can get an ordinary burn.
Q: Why is the raw data so noisy?
A: Radioactive decay is a stochastic process. The number of particles striking the detector is highly variable and needs to be averaged over a longer period of time to get stable numbers and observe more subtle trends.
Q: What's the difference between röntgens (R) and sieverts (Sv), anyway?
A: Röntgens measure exposure, sieverts try to take into account the effects of a received dose on the human body, depending on the exact type of radiation in question. For gamma radiation, the ballpark conversion rate is 100 R = 1 Sv.
Q: What about websites like RadiationNetwork.com, uRADMonitor.com, RadNet, etc?
A: They are cool, but many of them are closed platforms or have other issues - such as very limited graphing / trend analysis, ambiguous units (CPM), etc. I figured that it doesn't hurt to do this my way (and throw in weather patterns for good measure). If you like it, cool. If not, there are other sources to choose from.
Q: I want this. How do you have it set up?
A: The meter is NukAlert-ER - a relatively fancy, wide-range time-to-first-count device based on LND 7121; it is hard to find these days and I had to hand-craft a Linux driver for it. More accessible choices include cheap but narrow-range USB meters, such as Radex One or GMC-320Plus ($100); MCU-based hacks to intercept readings on the HD44780 bus of wide-range Canberra ADM-300 units that are currently abundant on eBay but have no USB port ($200); or DIY circuits with cheap Soviet SBM-20 or STS-5 tubes (sub-$40, but not truly calibrated). The Geiger counter aside, the remaining components are a collection of cron jobs to fetch solar X-ray flux readings from NOAA, query the wunderground.com API for weather data, and then to draw all the charts using gnuplot.
Q: On a related note, can you recommend any home decor accessories?
A: Yes, of course. Check out this page for more.
Q: Who are you?
A: You can reach me at lcamtuf@coredump.cx. By the way, your lucky number is: 17431044.
Weather data source:
Solar X-ray flux data source:
NOAA GOES 15